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Equilibrium properties of the linear perceptron 

J F Fontanari 
lnstitllto de Flsica e Qufmica de S o  Carlob Universidade de S o  Paulo, Caixa Postal 369, 
13569 S o  Carlos SP, Brazil 

Received 24 May 1993 

Abstract We study the equilibrium propenieS of the real weights linear perceptron within the 
replica formalism framework, focusing on the effects of the normalization of the weights on 
the leaning and generalization capabilities of the network. We also investigate the effecu of 
static noise corrupting the training data and of dynamical noise acting on the weights during the 
training stage. 

1. Introduction 

The real weights linear perceptron is probably the simplest non-trivial model of a leaming 
system that can be solved exactly. The main analytical tool for studying the equilibrium 
properties of systems with quenched disorder, represented in a learning system by the 
set of pattems to be learned, is the replica formalism (Binder and Young 1986, Mezard et 
al 1987). Perhaps the most appealing feature of this formalism is the fact that the parameters 
relevant to the description of the system appear naturally in the theory. In fact, although 
the application of the replica formalism to learning systems is rather recent, beginning 
with the seminal papers of Gardner (1988) and Gardner and Demda (1988). it has already 
produced a considerable amount of results that characterize the average case performance 
of single-layer perceptrons. This approach complements the typically wurst case analyses 
of computational learning theorists (Valiant 1984). 

The linear perceptron was first studied through a statistical dynamical approach (Hertz 
et al 1989, Krogh 1992, Krogh and Hertz 1992), which, however, cannot be applied to 
nonlinear models. In this sense, a replica calculation of the linear model is justified since it 
would facilitate the comparison with the more realistic models, singling out the effects of 
the nonlinearity of the basic processing units (neurons). Moreover, the replica approach aids 
understanding of the nature of the equilibrium phases through the analysis of the structure 
of the order parameters. Actually, such a calculation was carried out by Griniasty and 
Gutfreund (1991) for.the random mapping problem and for the learning from examples 
problem by Levin er a1 (1990) and Seung et al (1992). However, in these analyses the 
problem of the normalization of the weights was not appropriately consiciered. For Boolean 
networks the choice .of the normalization is irrelevant but in the linear case it plays a 
fundamental role as pointed out by Hertz et al (1989) in their analysis of constrained 
learning. In fact, the norm of the perceptron weights ,Q appears naturally in the replica 
formulation of the statistical mechanics of the linear perceptron and the main goal of this 
paper is to investigate the consequences of fixing this norm a priori or considering it as an 
order parameter to be determined by the saddle-point conditions. 

In this paper we study the performance of a linearperceptron in realizing an input/output 
mapping generated by another linear perceptron whose weights are drawn from a Gaussian 
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6148 J F Fontanari 

distribution of variance M. We use the term teacher to denote the network that generates the 
mapping and studenr the network trained to realize a subset of that mapping (training set). 
Thinking of each choice of Q as defining a different model, we are left with the problem 
of finding the model which better explains the training data. This model selection issue 
becomes interesting when there are several models that realize the training set perfectly, so 
an additional criterion is needed to differentiate between them. In this paper we test the 
criterion proposed by Rissanen (1986) which, stated in the statistical mechanics language, 
essentially tell us to pick the model that minimizes the freeenergy density (Meir and 
Fontanari 1993). 

We consider the effects of two types of noise acting on the neural network. The first 
one is a static noise that corrupts the original input/output mapping. The second type is a 
white noise, whose variance is related to the temperature, which turns the learning procedure 
into a stochastic process. For the Boolean perceptron, it was shown that the generalization 
performance of a network trained with noisy examples is improved in the presence of 
dynamical noise (Gyorgy and Tishby 1989). We show however that learning at non-zero 
temperature always degrades the generalization performance of the linear perceptron. 

The remainder of this paper is organized as follows. In section 2 we describe the model 
and define the quantities employed to measure the performance of the network. Section 3 
is devoted to the replica formulation of the statistical mechanics of the model. We consider 
three cases: Q is fixed a priori (constrained leaming), Q is chosen so as to minimize the 
free-energy (thermodynamic solution) and Q takes the minimal value consistent with a zero 
training error (pseudo-inverse solution). In this section we also compute the probability 
distribution of the student weights. In section 4 we apply Rissanen’s criterion for model 
selection, showing that in the noiseless case it correctly predicts the value of the variance 
of the teacher weights, having access only to the training data. Finally, in section 5 we 
summarize our results and present some concluding remarks. 

2. The model 

The neural network we consider in this paper consists of N binary input units Si = i l  
(i = 1,. . . ~ N ) ,  N synaptic weights Wi (i = 1,. . . , N )  satisfying the constraint 

(1) 

and a single linear output unit 

l N  
U = - W&. 

JFJ ;=I 

The task of the student perceptron is to realize the mapping between the 2N possible input 
configurations (8 and their respective outputs [<] generated by the teacher perceptron 
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where the weights W/ (i = 1, . . . , N) are statistically independent random variables drawn 
from the probability distribution 

To achieve this task, the network is trained with ~P = UN inputloutput pairs {S', <'I 
(1 = 1, . . . , P), where <' is the teacher's output to input E' and each component Si' is drawn 
from the conditional probability distribution 

with 

P&) = &y$ - 1) + fs(# + 1). (6) 

The input pattern S' is thus a noisy version of the pure pattern E'. The noise parameter 
0 < y < 1 allows the interpolation between the random mapping problem ( y  = 0) and the 
problem of learning from noiseless examples (y = 1). 

For a fixed realization of the training set, i.e. the P inputloutput pairs, the training 
process consists of a search on the space of networks for the global minimum of the 
training energy, defined as 

l P  
E(W, Dp) = E(<; -U')* 

I=I 
(7) 

where U' = u(W, SI) is the student's response to noisy input S' and Dp = (S', <'I stands 
for the training set. The specific training procedure we consider in this paper is a gradient 
descent on the N-dimensional training energy landscape 

where A is the Lagrange multiplier due to conskn t  (1). Here we have introduced the white 
noise r~ of variance 

( q l ( T ) r J j ( T ' ) ) n  = 2 T S j j S ( S  - T') (9) 

in order to model a dynamical noise acting on the weights during the training process. The 
dynamic theory of Hertz et al(1989) is based on the explicit solution of the above Langevin 
equation through the Fourier transform method. Thus, besides the equilibrium properties, 
this framework can be used to calculate intrinsically dynamic quantities as, for instance, the 
distribution of relaxation times. It should be noted however that the replica formalism can 
also be used to calculate that distribution (Opper 1989). 

In the regime of long times ( r  + ao) equation (8) leads to the Gibbs probability 
distribution 
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where Z p  is the partition function 

Z p  = J dw (W)e-flE(w,Dpr (11) 

and ,9 = 1/T. The normalized measure in weight space is 

To rid our formalism of the dependence on a specific mapping realization, we follow the 
standard prescription of performing quenched averages on extensive quantities only (Binder 
and Young 1986). Thus we introduce the average free-energy density f 

where (( . . .)) stands for the averages over S' (l = 1,. . . , P) and WO, while (. . .) stands 
for the thermal average. The average training error is thus simply given by 

In order to characterize the performance of the student perceptron in examples outside 

E g ( W  = 4 dv (s)(< - o(W, s))' (13 

the training set we define the generalization error 

J 

is the measure in input space. Here U is the sNde.nt's response to noisy input S and < is 
the teacher's output to input pattern 5. The probability that 5 belongs to the training set is 
c ~ N 2 - ~  so, for N + CO, equation (15) really measures the performance of the network on 
a novel example. Performing the integrations we find 

(17) 

where Q is defined by equation (l), R is the overlap between network W and the teacher 
perceptron WO 

E g W )  = +( Q -k M - 2y R)  

and M is the norm of the teacher perceptron 

which coincides with the variance of v, since we have assumed N + 03 in the above 
calculation. The average generalization error is then given by 

(20) 
For a more thorough discussion of the problem of learning from examples in neural networks 
we refer the reader to Gyorgy and Tishby (1989) and Seung er al(1992). 

E* = (( (E,(W)) )). 
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3. The replica theory 

The replica method is a prescription for effectuating the quenched average in equation (13): 
using the identity 

(21) 
1 

"-to n 
((In Z p  )) = lim - In(( Z$ )) 

we first evaluate (( Z; )) for integer n and then analytically continue ton = 0. Using standard 
techniques (Gardner 1988, Garher and Derrida 1988) we obtain, in the thermodynamic limit 

and 

- -  
The extremum in equation (22) is taken over all order parameters (Gab, Ro, Q., qab. Ra). 

The physical order parameters 

and 

measure the overtap between two different networks Wa and W b  and the overlap between 
network W' and the teacher network WO, respectively. 

To proceed further we make the replica symmetric ansatz, i.e. we assume that the values 
of the order parameters are independent of their replica indices 
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Evaluation of equations (23) and (24) with this ansatz is straightforward, resulting in the 
following expression for the replica symmetric average freeenergy density 

-BfRs =-s(l + I n Q ) + - q $ - R k - - Q ~ - - I n [ l + B ( Q - q ) I  
1 1 1 a 

2 2 2 

The replica symmetric order parameters (q,  R ,  k ,  $, 4) are given by the saddle-point 
equations 

R = M k ( Q - q )  

The average training error, equation (14), reduces to 

The condition for the local stability of the replica symmetric saddle-poir 
Thouless 1978) is given by 

UYOYI < 1 

lmeida and 

(35) 

where yo and y1 are the transverse eigenvalues of the matrices of second derivatives of Go 
and GI with respect to Gojob and qob, respectively. Following the analysis of Gardner and 
Derrida (1988) we find that condition (35) is written as 

The system of coupled equations (29x333 can easily be reduced to a single equation for 
the Edwards-Anderson order parameter q 
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Figure 1. Zero-temperature traimng error as a function 
of the training set size for Q I M  = 0.1, 0.5, 2, 5,  and 
y =  1 .  

Figure 2. Zero-temperature gendizalon ermr as a 
function of the training set size for Q I M  = 0.1,0.5, 1, 
2, and y = I ;  'Ex broken curve is the pseudo-inverse 
Solution 

For general Q ,  T, a and y .  this quartic equation possesses four real roots, among which 
we must pick the one that maximizes the replica-symmetric free-energy ~ R S .  

We consider first the zero-temperature limit, ,9 + 00. Equation~(34) implies that = 0 
if q < Q, i.e. the student perceptron realizes the training set perfectly. In this case we find 

and 

eg = f t Q  + M - ZMay'). (39) 

According to condition (36) this solution is stable for a c 1. The largest training set size 
that can be leamed perfectly, ac, is obtained by setting q = Q in equation (38) 

In particular, for the random mapping problem (y = 0) we find ac = Q / ( Q  + M ) ,  while 
for the leaming from noiseless examples problem ( y  = 1) we find ac = 1 if Q 2 M and 
ac = Q / M  if Q c M. The usual choice Q = M (Griniasty and Gutfreund 1991, Seung 
et al 1992) maximizes a, only for y =II .  For a > ac, equation (37) reduces to a cubic 
equation for the variable x = p(Q - q)  c 00. The analytic solution is simple only in the 
case y = 0 where we find 

which is stable for .M > 0. For y = 1, we present in figures 1 and 2 the average training 
and generalization errors, respectively, for several choices~of Q. The training error is zero, 
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independent of a, for Q = M .  However, it is clear from figure 2 that this choice does not 
give the minimal generalization mor for a c 1. Since there are infinite choices of Q that 
give = 0, this region is an excellent test bed for model selection criteria that intend to 
predict the value of Q that minimizes the generalization error without actually presenting 
novel examples to the perceptron. We will return to this issue in section 4. On the other 
hand, Q = M is clearly the optimal choice for 01 2 1, since setting Q = M in equation (39) 
yields es = 0. A continuous transition to a regime of perfect learning (eg = 0) occurs only 
for Q = M ,  otherwise the problem is unrealizable and thus eg tends to a positive constant 
as (Y -+ 03 (see equation ( 4 7 )  below). 

0.3 i 

I ‘r 0 0.1 

0-2IF- _--- 

- I  
0.0 

0.0 2.0 4.0 6.0 

5 a 
0 

~~ 0.0 I I I 
0.0 2.0 4.0 6.0 

a a 

Figure 3. Zem-temp” mining error as a function 
of the training se$ size for Q / M  = 0.1.0.5.1. and 
y = 0.8. The broken curve is lhe pseudo-inverse 
solution. 

Figure 4. Same as figure 3, but for lhe generalization 
error. For a -, m the minimal h obtained for 
Q / M  = y z  = 0.64. 

In figures 3 and 4 we depict and cg, respectively, for training with noisy examples 
(y  = 0.8), so that a regime of perfect learning is no longer attainable. Note that in this case 
the minimal generalization error is achieved in the regime of non-zero training mor. 

We tum now to the analysis of the non-zero temperature limit. Only in the limits 
of small and large a can we obtain analytic expressions for the Edwards-Anderson order 
parameter and the training and generalization errors. For small a we lind 

Q+T 

E - ’ (  l - 5  e+T Q + T  (43) 

and 

e - -  M + Q - ~ Y ~ M ~ + ~  L) + 0 (d). 
g -  2 Y 

The mining error at a = 0 presents an interesting behaviour as a function of T. For 
T c 2 M  its minimum is tt = T ( 4 M  - T ) / S M  obtained for Q = 2 M  - T, while for 
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T > 2 M  its minimum is ct = M / 2  obtained for Q = 0. In contrast, the generalization e m r  
does not depend on T in this limit. For y > 0, in the limit of large a we find 

and 

These results are in agreement with the ones obtained by Seung et a1 (1992) in their analysis 
of smooth networks. We note. that for the Boolean percepmn in the realizable regime 
( y  = 1) the generalization error scales with l/u, while in the ukalizable regime ( y  < 1) 
it scales with I/& (Gyorgy and Tishby 1989, Meir i d  Fonkari  1992). In the asymptotic 
limit, the minimal generalization error is given by the choice Q = My2. Note that model 
selection is not an issue here, since this optimal choice could be obtained by minimizing 
the training error. 

W 

o'8 1 I / 1.5 

I 
'- 1.0 
W 

0.5 

0.0 \ 0.0 I I I 
0.0 2:o 4:O 6.0 0.0 2 .o 4.0 6.0 

a a 

Pigure 5. Training error as a function of the haining 
set size for Q/M = 1.5. IO. 100 and y = T = 1. The 
broken curve is the thermodynamic solution. 

Figure 6. Generalization ermr as a function of the 
training set size for Q / M  = 0.1. I ,  2 and y = T = 1. 
The broken curve is the thermodynamic solution which 
diverges form < 1. 

For intermediate values of a, we have to resort to a numerical solution of equation (37). 
In figures 5 and 6 we show the dependence of the training and generalization ermrs on the 
training set size for y = T ~= 1 and several values of Q. In the region a < 1 the training 
error is practically insensitive to a for large Q. For Q < M ,  it decreases monotonically 
with increasing a. The point to note in figure 6 is that for a given a there is an~optimal Q 
that minimizes the generalization error. 

We have verified that the replica symmetric saddle-point is locally stable for all a. 
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An interesting piece of information is the distribution of values the student weights can 
take on after learning the training set. The probability that weight Wi takes on the value W 
is defined as 

WWi = W) = (( @(Wi - W)) )) 

The averages are performed by using a standard replica trick to lift the denominator to the 
numerator (Mezard et al 1987). Assuming replica symmetry yields 

Pr(w = W) = dW: P(W:) J 

Note that the statistical independence of the teacher weights W: (i = 1, . . . , N) implies that 
the weights of the student perceptron are also statistically independent variables. Performing 
the average over WO and using the saddle-point equations to eliminate the hatted variables 
gives 

For fixed Q, the dependence on the control parameters T ,  a and y is implicit in the order 
parameter R. For y = 0 this distribution reduces to the one found by Bouten et a1 (1990) 
for the Boolean perceptron. In the case that Q is fixed, addition of new examples can only 
shift the mean value of this distribution while the width remains constant. In fact, if J = 0 
then the training set size does not affect the distribution of weights. It is interesting that J 
plays no role at all in the statistical mechanics analysis of this section. 

3.1. The thermodynamic solution 
In this case Q is chosen so as to minimize the free-energy f, i.e. af/aQ = 0. Since Q is 
no longer fixed apriori, this solution is a good approximation to the unconstrained learning 
problem obtained by setting h = 0 in equation (8) (Hertz et ai 1989, Krogh 1992, Krogh and 
Hertz 1992). Minimization of f ~ s  with respect to Q results in an additional saddlepoint 
equation 

T 

Q = q + A  f f - 1 .  
However, using equation (33) to eliminate the hatted variables it is easy to see that a solution 
with positive Q is possible only if (Y z 1. In this regime we obtain 
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For (Y c 1 the derivative of f ~ s  with respect to Q never vanishes, so fns is minimized for 
Q = cq resulting in 

EP = W. 

As expected, a, = 1 independently of M and y .  The generalization e m r  presents a 
discontinuity at (Y = 1 only for T = 0 and y = 1. In this case, the thennodynamic solution 
predicts a discontinuous transition to the regime of  perfect learning. For y = 0, our results 
are in agreement with the ones obtained for the unconstrained learning problem, (Kmgh 
1992). However, for y = 1 and CY < 1, unconstrained learning gives results which are 
identical to the ones obtained by setting Q = M (Krogh and Hertz 1992). This is a rather 
odd result, since in the absence of constraints on the weights there are infinite values of  Q 
(including Q + w) that give et = 0 and an average over the generalization performances 
of all these zero-error solutions must necessarily diverge (due to the contribution of  the 
large Q’s) in agreement with the thermodynamic solution presented above. 

Equations (47) and (54) explicitly show ,that the generalization error is a monotonically 
increasing function of the temperature. Thus, in contrast with the Boolean percepbon 
(Gyorgy and Tishby 1989), training at non-zero temperature, even in the case of  noisy 
examples, always degrades the performance of the network. 

3.2. The pseudo-inverse solution 

According to @per et nl (1990). the pseudo-inverse or the projector is defined as the set 
of couplings that realizes et = 0 and has minimal norm Q for 01 < I ,  being identical to the 
thermodynamic solution for 01 > 1. Clearly, this definition is valid only for T = 0, since 
the training error never vanishes for non-zero temperatures. For a fixed (Y < 1, the minimal 
Q for which et = 0 is obtained by finding the value of Q such that 01 equals the critical 
value given in equation (40). We find 

aM(1 -ay2)  
Qp 

1 -ff 

which gives the generalization error 

Equation (58) agrees with the result of Opper et al (1990) obtained for y = 1. The 
generalization error, however, cannot be compared, since those authors use a definition 
different from equation (15). As the generalization error, equation (39). depends linearly 
on Q for solutions with = 0, the solution that minimizes Q also minimizes eg. This 
~optimality is illustrated in figure 2 where the broken curve represents the pseudo-inverse 
solution. Figure 4 shows, however, that for y < 1 the best generalization performance 
is attained by allowing errors during the training stage. It should be emphasized.that the 
pseudo-inverse gives the optimal generalization performance only among networks that 
realize the training set perfectly. 
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4. Model selection 

h a  mentioned in section 3, at T = 0 and for a c 1, any model with Q larger than QQ 
realizes the training set perfectly. The question is then how to determine the value of Q 
that gives the minimal generalization error knowing only the performance on the training 
set. Following a proposal by Rissanen (1986), recently discussed in the context of neural 
networks by Meir and Fontanari (1993), the optimal Q would be the one that minimizes 
the so called stochastic complexiv defined as 

where P(Cm+l 1 4, Sm+') is the density of probability of a given model predicting I;,+' 
given input Sm+' after having being exposed to the subset D, = 15'. Sf], I = 1, . . . , m of 
the training set Dp. One has 

the integration over W in equation (61) can be readily performed yielding 

so that equation (60) becomes 

1 a B  
N 2 2n I = -- In Z p  - - In -. 

The average stochastic complexity is then given by 

(65) 

where f is the average free-energy density (22). Within the replica symmetric framework 
we find, forq c Q and B + 00 

Z = ~ a ( l n 2 n - 1 ) + ~ ( 1 - ( 1 ) l n ( l - a ~ )  

f f B  
2 k  

Z = ((I)) = --In - + pf 

+ 1 In Q - $(I - a )  ln((1 -a )Q  -aYM(l -ay2) ) .  (66) 
As expected, Z = 0 independently of Q for (I = 0. It can be easily verified that Z is 
minimal for 

M(l - ay2)  

1 -a  . QR = 

Thus, similarly to the findings of Meir and Fontanari (1993), Rissanen's criterion fails in 
predicting the model that gives the minimal generaliion error, namely, the pseudo-inverse 
solution (58). On the other hand, only in the noiseless case (y = 1) are the training data 
generated by a deterministic model and, in this case, Rissanen's criterion does select the 
correct model QR = M. 
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5. Conclusion 

We have presented an analysis of the real weights linear perceptron within the replica 
formalism framework. The emphasis was on the effects of the norm Q of the weights on 
the learning and generalization capabilities of the network. In particular, we have shown 
that the continuous transition to a regime of perfect learning reported by Krogh and Hertz 
(1992) and Seung et al(1992) occurs only if we use aprion' information about the generator 
of the training data to design the network, otherwise that transition is discontinuous. 

In the case of learning with noisy examples, we have found that the minimal 
generalization error is obtained for choices of Q that do not minimize the training error 
(figure 4). However, for a given Q ,  learning at non-zero temperature (i.e non-zero training 
error) always degrades the generalization performance, in contrast to the findings of Gyorgy 
and Tishby (1989) for the Boolean perceptron. Moreover, we have shown that among 
the networks that realize the training set perfectly the best generalization performance is 
achieved by the pseudo-inverse network In this paper the prediction ability of the linear 
network is measured by the generalization error (15). We note that in the analyses of k v i n  
ef ul(1990) and Solla and Levin (1992) this ability is measured by the prediction error Gm, 
defined as 

Gm = -Inp(t'"+' I D,,,,S"'+') (68) 

where P(<"+' I 4, S'"+') is given by equation (63). which can be minimized by training 
at non-zero temperature in the case of noisy examples. 

The regime a < 1 and T = 0 provides an interesting test bed for model selection 
criteria, as there are many choices of Q (models) that realize the training set perfectly 
( E ~  = 0). Clearly, the best model to explain the training data is the one that minimizes the 
error in a novel example and a good model selection criterion should predict that model 
based only on information provided by the training data. We have shown that Rissanen's 
minimum description length criterion fails in this test. The correct criterion in this case is 
to choose the smallest Q consistent with = 0. It is important to mention that Rissanen's 
criterion is certain to yield the best predictor model, namely Q = M y 2 ,  in the limit of large 
training set size. 

As the replica symmetric ansatz was found to be. stable at all temperatures and training 
set sizes, the results presented in rhis paper are exact. This is not a surprise, since the 
model we consider is a version of the spherical model of a spin glass studied by Kosterlitz et 
al(1976). whose rigorous solution coincides with the replica symmetric solution. According 
to Gardner er al (1989). this implies that the set of networks with minimal training error 
forms a connected region in the space of networks consistent with constraint (1). 
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